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Table 1. Ranges in s corresponding to the number of 
major oscillations 

Number of pronounced 
s oscillations 

0-5 1 
5-9 2 
9-13 3 

4n - 3-4n + 1 n 

After some simplifications, one obtains the following 
two solutions 

tan (Tr/s)[s2/4+(h°) 2] 
8 [ ( 2 / S ) 1 / 2 ( S / 2  "~- h°)]-3 t- S [ ( 2 / s ) 1 / 2 ( s / 2  - h°) ]  

C [ ( 2 / s ) 1 / 2 ( s / 2  -]- h°) ]  -3 t- C [ ( 2 / s ) 1 / 2 ( s / 2  - h°) ]  ' 

(13) 

h ° = ±integer. 

Figs. 3 and 4 give the profile shape v e r s u s  h 3 for s 
values of 0.10, 14.9, 30.9 and 46-9 (all locate 
minimum positions in Fig. 1). In Fig. 3, s was 
increased by fixing N3 at 1000 and increasing Ad/(d). 
The number of oscillations is seen to increase from 
0 to 6, in steps of 2. Note that the width of the peak 
increases with increasing Ad/(d). As expected, the 
number of oscillations in the half space with s --- 14.9 
is equal to the number of pairs of minima (sine, 
cosine) in the Fresnel functions between x = 0 and 
x=(s/2)  1/2. In Fig. 4, s was increased by fixing 
Ad/(d) at 0.01 and increasing N3. In this case, the 
width of the peak is a constant, whereas the number 
of oscillations increases. 

It becomes evident from these results that approxi- 
mate values of dd/(d) and N 3 c a n  be determined 

very simply. If s > 4, then the ratio of the intensities 
at h°=+(s/2)[ha=±½(Ad/(d))l] to that at h °= 
0(h 3 - l) is approximately equal to one-fourth. Con- 
sequently, the width at one-fourth the intensity of the 
peak center can be used to estimate Ad/(d>. Similarly, 
the number of pronounced oscillations in the full 
X-ray profile is given by int [ ( s+3) /4 ]  where int 
denotes 'integer part of'. From the preceding dis- 
cussion, we have found that the peak width and the 
number of major oscillations can be used to estimate 
Ad/(d) and s. The latter being known N 3 c a n  be 
calculated. Table 1 gives various ranges in s corre- 
sponding to the number of major oscillations. This 
procedure is only semi-quantitative and is suggested 
only for a quick interpretation of the intensity data. 
The most accurate determination of the parameters 
is obtained by least-squares fitting the experimental 
profile to (12). This may be carded out by beginning 
with estimates of Ad/(d) and N3. 

The authors are grateful to the National Science 
Foundation (Grant No. DMR-8000933) for funding 
this research. 
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Abstract 

The problems of making calculations using the total 
phonon scattering cross section in the harmonic 
approximation are examined and it is found that the 
method of Reid & Smith [J. Phys. C (1970), 3 1513- 
1526] can be extended to cope with any material with 
a modest number of atoms per unit cell. Complex 
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eigenvectors and complex scattering factors may be 
handled without approximations. The method is used 
to evaluate the multiphonon scattering (and one- 
phonon scattering) for a number of cubic zincblende 
structure compounds including GaAs, CdTe, CuI and 
SiC, taking eigendata from good lattice dynamical 
models. The results illustrate a discussion of the 
typical behaviour of multiphonon scattering as a 
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518 INTERPRETATION OF MULTIPHONON X-RAY SCATTERING 

function of scattering vector and temperature. The 
effect of anomalous dispersion on the total phonon 
scattering cross section is also shown and a discussion 
given of the origin of multiphonon processes, with 
particular reference to the contribution of these pro- 
cesses to the diffuse scattering observed near Bragg 
reflections. It is also concluded that dynamic defor- 
mation will not significantly affect multiphonon 
intensities. 

Introduction 

The normal approach to phonon scattering of X-rays 
in the harmonic approximation is to express the total 
cross section as a series of terms, the terms represent- 
ing one-phonon scattering, two-phonon scattering, 
three-phonon scattering and so on. These terms are 
increasingly tedious to calculate, so much so that an 
exact calculation of the three-phonon terms is seldom 
attempted and resort is made to drastic approxima- 
tions for higher-order terms. The difficulties of 
evaluating these sums for a zincblende structure 
material are well illustrated for InAs by Orlova 
(1979a, b, 1981). 

So widespread is the phonon expansion and its 
subsequent limit to one or two terms that it is generally 
taken for granted (for any material) that (a) three- 
phonon and higher-order terms are negligible and (b) 
if one is sufficiently concerned to bother about multi- 
phonon scattering it is so structureless in reciprocal 
space that it can be represented by the incoherent 
approximation. Regrettably both these working rules 
are generally false. The phonon expansion is satisfac- 
tory only in the regime where the series converges 
very rapidly, quite seriously limiting the range of 
scattering vectors and temperatures where it can be 
reasonably applied. 

The analytic expression for the total phonon scat- 
tering, including all multiphonon processes in the 
harmonic approximation, has been known since the 
work of Waller (1928), and more widely since the 
article by Born (1942) and the textbook by 
Maradudin, Montroll & Weiss (1963). Reid & Smith 
(1970) demonstrated that it was feasible in the case 
of an alkali halide to calculate precisely the total cross 
section from a good lattice dynamical model. Since 
that time little progress has been made in extending 
their technique to more complex materials. Robertson 
& Reid (1978) presented the results of a correspond- 
ing calculation using a shell model for silicon but 
gave no details of their treatment. It is worth returning 
again to the work of Reid & Smith (1970), for several 
reasons: 

(a) to refine the method and extend it to more 
complex materials; 

(b) to point out the possibilities and limitations of 
their approach; 

(c) to explore more fully the features of the total 
phonon scattering that are representative of materials 
in general, particularly with regard to variation of 
scattering vector and temperature; 

(d) to calculate results for the important class of 
materials represented by the cubic zincblende struc- 
ture materials [for example to help interpret the 
experimental work of Ghezzi & Bocchi (1982)]; 

(e) to use it to investigate the sort of differences in 
the scattering that can be given by different 'good' 
lattice dynamical models for the same material. 

These aspects will be dealt with here, along with 
some account of the relevance of multiphonon pro- 
cesses in the integrated diffuse scattering intensity 
measured around Bragg peaks. 

The total scattering cross section 

The kinematic harmonic X-ray scattering cross sec- 
tion for scattering vector K is given in electron units 
per cell (following Maradudin et al., 1963 and others) 
a s  

I /No'o/o  = E fk exp ( -  Wk)f*'  exp (-- Wk,) 
lkk '  

x exp { iK. [r(Ik) - r(Ok') ]} exp (Wkk') 

( l a )  

where 

W k k , = ( 1 / 2 N )  ~, (E/to2)~ 
h 

x {[K. 8 (k /A ) mkl/2][K. 8* (k ' /h  )mk ,1/2] 

+ [K. 8*(k/A)  mk'/2][K. 8 ( k ' / h  ) ink)/2]} 

x exp { iq. [r( lk ) - r(Ok') ]}. (lb) 

The notation is one variant of common practice 
and is given for reference in the Appendix. 

Expression (1) is the basis for the calculations 
reported here. The Debye-Waller factors appear 
explicitly and have often been considered as param- 
eters that can be determined from Bragg scattering 
intensities. Expression (1) is also the basis for the 
traditional phonon expansion, achieved by represent- 
ing exp (Wkk') as a power series of phonon sums. In 
this paper the term 'multiphonon' refers to the sum 
of all phonon processes except the one-phonon. 

It is worth noting that the total phonon scattering 
may be written in a slightly different form, which will 
be more helpful for interpreting some aspects of the 
origin and behaviour of multiphonon scattering. The 
separation of the Debye-Waller terms Wk from the 
exponent Wkk' is a separation of habit and some 
convenience, rather than a necessity. Both are con- 
trolled by the same lattice dynamical properties. 
They may be combined succinctly to give the total 
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scattering as 

I~ No'o/o = Y'. f k f* ,exp{ iK . [r ( l k ) - r (Ok ' ) ] }  
lkk '  

× exp { - ( 1 / 2 N )  E (El(oZ)x 
A 

× lK. ( k /  X )m-; 1/2 exp [ iq. r( lk) ] 

- K. 8 ( k ' / A  )m-~,x/z exp [iq. r(0k')]l z}. 

(2) 
Expressions (1) and (2) are identical if the Debye- 

Waller factors are calculated from the same eigendata 
as those used to evaluate W~, but otherwise they are 
not, with implications that will be discussed later. 
Expression (2) also shows that the Debye-Waller 
factor represents a reduction in scattering caused by 
a particular set of multiphonon processes that involve 
no net change in the scattering vector. Viewed in this 
light, these are the multiphonon effects with which 
crystallographers are most familiar. It is natural from 
this viewpoint to ask what scattering effects are pro- 
duced by all other multiphonon processes. Those who 
are not interested in the calculations themselves 
should move to the section on The structure of  the 
total phonon scattering in reciprocal space. 

Role of the mieroerystal 

The intensity given by (1) is the scattering given by 
the entire crystal, the summations being over each 
atom in the structure and each normal mode. The 
usual lattice dynamical periodic boundary conditions 
are implied to remove difficulty with surface atoms. 
To calculate the scattering, a microcrystal must be 
chosen. For a given choice of microcrystal its set of 
phonon wavevectors will constitute a sample of the 
wavevectors of a macroscopic crystal, uniformly 
covering the Brillouin zone. Every phonon process 
represented in the calculation will involve only these 
wavevectors. This applies to the one-phonon process 
as well, and hence only a discrete set of scattering 
vectors K can be used in the calculation, namely those 
that satisfy 

K + q = G ,  (3) 

where G is a reciprocal-lattice vector and q a wave- 
vector of the microcrystal. The main limiting effect 
of the microcrystal is this restriction on the allowed 
scattering vectors for which cross sections can be 
calculated directly. Scattering cross sections for other 
K values must be obtained by interpolation. 

It is a relatively minor effect that in the almost 
continuous range of wavevectors of a macroscopic 
crystal there are many between those of the sampled 
set that are not included in the sum. So long as the 
sample density is reasonable [in terms of the curvature 
in reciprocal space of the terms that contribute to the 

sum Wkk, of ( lb)] ,  the averaging by the sample 
will adequately represent multiphonon processes. 
'Reasonable' appears in practice as 500 wave- 
vectors distributed through the Brillouin zone (see 
later). 

Reid & Smith chose a microcrystal consisting of n 
by n by n face-centred-cubic unit cells. This has 4n 3 
wavevectors and is a satisfactory choice for values of 
n = 5 and above. As an alternative to this 'cubic' 
choice, a 'primitive' microcrystal consisting of 2n by 
2n by 2n primitive unit cells is also used in the 
calculations here (Fig. 1). This has 8n 3 wavevectors 
and gives a better coverage of scattering vectors in 
some directions. For example in the [111] direction, 
scattering vectors in increments of (0.2, 0.2, 0-2)27r/d 
are given by a cubic microcrystal with n = 5 but incre- 
ments of (0.1, 0.1, 0.1)27r/d are obtained from the 
primitive microcrystal with n = 5. Since the primitive 
mierocrystal has twice the number of wavevectors 
and twice the number of atoms, the calculation takes 
four times as long. To obtain the same finer spacing 
with a cubic microcrystal requires n = 10 and hence 
a calculation taking 64 times as long. 

Role of symmetry 

The cubic symmetry of the zincblende structure 
materials provides no major simplification of the 
summation, because symmetry-related wavevectors 
do not produce symmetry-related contributions to 
W~, owing to the presence of the real lattice coordin- 
ate r(lk). Although hindering the calculations in this 
case, the implication is that materials of much lower 
symmetry can be likewise treated. The inversion sym- 
metry of every Bravais lattice (and reciprocal lattice) 
allows the r(lk) and q sums to be taken over half the 
number of points. The contribution of pairs of terms 

Fig. 1. The primitive microcrystal with n = 3, which contains (2n) 
primitive f.e.e, unit cells. The bottom left atom is taken as at 
coordinate (-n, -n, -n)d and the top fight as at (n, n, n)d, 
where d is the cubic cell side. 
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to Wkk, becomes 

[2/N(mkmk,) '/2] Z (E / os2)A {[K. d"(k/ , t  )K. # ' ( k ' /A  ) 
J 

+K. 8 ' (k /A  )K. • '(k'/A )1 cos q. [r(Ik) - r(0k') ] 

+[K.8 ' (k /A)K.gr(k ' /A)  

- K .  gr(k/  A )K. 8i(k' /  A )] sin q. [r(Ik)-r(Ok')], 
(4) 

where the superscripts r and i refer to the real and 
imaginary parts of the eigenvectors. 

Anomalous dispersion 

Anomalous dispersion modifies the scattering factors 
fk to complex 

fk= fO + f'k + if~, (5) 

where fo is the uncorrected scattering factor, f~ and 
f~  the anomalous corrections. Values for f~ and f~ 
listed in International Tables for X-ray Crystallography 
(1974) were used in the results presented later, but it 
is straightforward to use experimental values. They 
are accurately incorporated by writing the total scat- 
tering factor in the complex notation 

A = If~l exp (i¢k). (6) 

The scattering-factor phase difference is added into 
the real-space cosine terms (arising from the Bravais- 
lattice inversion symmetry), giving them as 

2cos {K.[r(lk)-r(Ok')]+~k-~k,} (7) 

and Ifkl used in (1) to multiply the Debye-Waller 
term. The accuracy of the anomalous dispersion 
coefficients may fall short of that of the scattering 
factors but their inclusion does show (for the first 
time?) the effect of anomalous dispersion on multi- 
phonon scattering. 

There is nothing special about the complexity intro- 
duced by anomalous scattering. The same approach 
may be used to incorporate complexity of the scatter- 
ing factors from any other cause (such as a non- 
spherical electron distribution) without any increase 
in computing time. 

Zerophonon term 
The occurrence of the term q = 0 in the total phonon 
scattering equation (1) cannot be taken at face value, 
nor be omitted on the grounds that the real sample 
is held stationary in the laboratory. It must be argued 
that the microcrystal successfully represents the scat- 
tering from a real crystal because contributions from 
each wavevector of the microcrystal accurately rep- 
resent the average contribution from a surrounding 
volume of wavevectors that are present in the scatter- 
ing sums for a much larger crystal. Hence the single 

contribution from q=  0 in the microcrystal should 
represent the average contribution from a surround- 
ing volume (of very small wavevectors). Reid & Smith 
evaluated this 'zerophonon' term from the macro- 
scopic data of elastic constants and optical frequen- 
cies (at zero wavevector). It is more consistent to 
evaluate the zerophonon term from the lattice 
dynamical model used for the rest of the phonon 
data. This will be done here. It is also important to 
give it thorough attention because this one term pro- 
vides a disproportionate contribution to the scatter- 
ing. In fact as the Bragg peak is approached it pro- 
vides a greater and greater fraction of the total scatter- 
ing, typically reaching in excess of 20% at the closest 
point to the Bragg peak for the microcrystals con- 
sidered here. 

Let the zerophonon contribution to Wkk' of (lb) 
be Zkk', then 

Zkk,=[ll N(mkmk,)l/2] • (Il Vz) 
J 

f 
x I dq(E/t°2)aK'°~(k/A)K'#*(k ' /A) '  (8) 

Vz 

where Vz is the 'zerophonon volume' of 1 /Nth  the 
Brillouin zone volume. Since the phase term in Wkk, 
does not differ much from unity over the microcrystal 
zerophonon volume, the factor exp (Zkk') multiplies 
the entire scattering sum calculated over the remain- 
der of the Brillouin zone, giving the zerophonon 
contribution to the scattering as 

E [exp(Zkk,)--l] 
kk' 

× (scattering due to rest of phonons). (9) 

In distinction to the general term contributing to 
Wkk', cubic symmetry of the zincblende structure 
materials does simplify the zerophonon term. 
Equation (8) becomes 

Zkk ,= [ 1/S(mkmk,)'/2](Igl2/3 E (1/Vz ) 
J 

x f dq(~ lo . ,b~ ,8(k lA) .#* (k ' l ,~ ) .  
Vz 

(10) 

From this expression the zerophonon term is evalu- 
ated under the following assumptions: 

(a) The zerophonon volume is a sphere of radius 
rz (equal to 1 /Nth  the Brillouin zone volume); 

(b) within the zerophonon volume the optic 
branches are constant, the acoustic branches disper- 
sionless, and the eigenvectors constant in any 
direction; 

(c) the variation of slope in the acoustic branches 
with direction of wavevector may be represented by 
a sample of a star of the smallest wavevectors. 
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Following (c) the zerophonon volume is divided 
into dVs cones, each cone centred on a wavevector q, 
chosen to represent part of the dispersionless limit. 
The optic mode contribution is therefore 

ZOkk, = [ K2/3 N( mkmk,) 112] 
x ~ (1/2¢'~)~ ( E /  2 O) ) qsJoptic 

Joptie qs 

xS(k/q,joptic) .$*(k'/qjoptie) (11) 

and since all symmetry-related q, contribute identi- 
cally it is only necessary to sum over symmetry- 
unrelated q~, provided their multiplicity is accounted 
for. For the acoustic term, the energy integral must 
be integrated along qs to the edge of the zerophonon 
volume, which introduces the Debye integral 
D(qsjacoustie) given by 

Xrnax 

O(qsjac°ustic)=(1/Xmax) f [x/(eX-1)]dx 
0 

(12) 

where 
Xma x = htOmax/kT 

and tOma x is the angular frequency at the edge of the 
zerophonon sphere in direction qs for the branch 
Jacoustie. The acoustic contribution to the zerophonon 
volume is now 

Z A k k ,  = [. K 2/3 N ( m k m  k,) 1121 

x Y~ (1/2¢'s) Y. [(3kT/to2ax) 
Jaeoustie qs 

× D(qs.~eoustie) + 3 h/4tOmax] 

x~(k/qsjacoustie) . 8*(k'/qsjaeoustie). (13) 

Combination of the constituents (11) and (13) of 
the zerophonon term gives, simply, 

Zkk, = ZAkk, + ZOkk, (14) 

with (9) illustrating how Zkk, appears in the calcu- 
lation. 

The choice of qs is a matter of balancing the con- 
venience of a small choice against reasonable 
accuracy. In the calculations described here, for a 
microcrystal with n = 10 or above the lowest seven 
symmetry-unrelated wavevectors in the primitive 
mesh sample were used (giving a star of 122 wave- 
vectors) and below n = 10 only the lowest three 
wavevectors of the primitive mesh (giving a star of 
26 wavevectors). Of course eigendata could be 
specially generated in the zerophonon volume at a 
much higher density than that given by the mesh 
being used in the sum, but the procedure outlined 
above works satisfactorily, as will be seen in the next 
section. 

The same zerophonon technique may be used in 
Debye-Waller factor calculations. 

It is necessary to go through this treatment of the 
zerophonon term (or an equivalent treatment) if one 
uses (1) to calculate the scattering. It is not necessary 
to do so using (2). The zerophonon contribution to 
the scattering in this formulation is I(Z) given by 

I(Z)/Ncrolo = E 9~fk*' exp {iK. [r(Ik)-r(Ok')]} 
lkk' 

xexp [-(IKI2/3N) ~ (1/Vz) 
J 

x [ dq (E/~,:),, 
I v  

Vz 
I ,~(k/,x )/m~k/2- 8(k'/,~ )/m ~/, 212]. 

(15) 
For all r(/k), the scattering I(Z) is identically zero 
for terms with k' = k and small for terms k' # k. What 
is happening is that the zerophonon contribution to 
the scattering [as defined by (9)1 is effectively can- 
celled by the zerophonon contribution to the 
Debye-Waller factors. Some further implications of 
this viewpoint will be made later in respect of Bragg 
reflections. 

Results - convergence for increasing microcrystal size 

The results presented hereafter have all been calcu- 
lated with the cubic microcrystal choice of n = 10 for 
scattering vectors in the [1001 and [1101 directions 
and with the primitive microcrystal of n = 10 for the 
[111] direction. In general the Debye-Waller factors 
appropriate to the model as calculated by Reid 
(1983a) were used but for GaAs at 295K the 
best experimental values (Bra = 0.686; BA~ = 0"575; 
G. Mackintyre, private communication) were chosen 
for all models to try to improve the accuracy of the 
intensities at lower wavevectors (see later). 

Results calculated for small microcrystals agree 
with those for larger ones even better than might be 
anticipated. For example the zone boundary scatter- 
ing (where the multiphonon contribution is the 
greatest percentage of the total) is given in GaAs to 
within a few percent by the extremely small micro- 
crystal of three unit face-centred cubes along each 
edge. Table 1 shows some convergence figures for 
different mesh sizes. It also illustrates that within the 
practical limit of a mesh size of n = 20 (dictated by 
a computing requirement of roughly 101° floating- 
point operations) convergence can only be checked 
without interpolation at the relatively small set of K 
values that are commensurate with several meshes. 

There are several reasons for this good conver- 
gence. The periodic boundary conditions ensure that 
the bulk phonon frequencies and eigenvectors are 
always used; at both small and large sin 0/A the total 
phonon scattering is necessarily independent of the 
mesh, as is discussed in the next section; at intermedi- 
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Table 1. The convergence with increasing mesh size of multiphonon scattering intensities (in electron units per 
cell) for three scattering vectors K along the [100] direction 

The upper figure for each K is the multiphonon scattering calculated on the cubic mesh for the given n values; the lower figure, the 
zerophonon contribution to the above figure. The values marked with * could not be calculated directly but were obtained by four-point 
interpolation; those marked with t were obtained by three-point interpolation. For n = 5 the convergence, as a percentage of  the 
multiphonon scattering, is usually better than 1% over the K region of  interest and as a percentage of  the total phonon scattering much 
better. The figures are for GaAs at 295 K, calculated from the shell model. 

2 3 4 5 8 10 12 15 16 

17"09 14-58 14"39 14"30 14.27 14"30 14.29 14.29 14.29 
5"0, 0, 0 3"72 1.69 1"08 0.80 0.46 0.38 0.31 0.23 0-22 

19.31 17"95t 17.47 17.45" 17"37 17.42 17.41 17.41" 17"41 
4.5,0,0 6.09 3"36t 1-91 1-47" 0.81 0.67 0-54 0.42* 0.39 

24.53 25-57* 25.83 25.74* 25.93 25.92* 
4.2, 0, 0 5"91 3"79* 2.81 2.01" 1.77 1-63" 

ate sin 0/h  values, there is no strong structure over 
the Brillouin zone in the terms contributing to Wkk', 
and the zerophonon term gives an analytic treatment 
to long-range correlations in atomic positions that 
would be most seriously misrepresented by a small 
microcrystal. 

The structure of the total phonon scattering in 
reciprocal space 

Before looking in detail at the numerical results to 
be presented here, the general structure of the scatter- 
ing in reciprocal space merits some discussion. Fig. 
2, calculated for GaAs at 295 K, shows on a logarith- 
mic scale the broad features to be expected when 
investigating an appreciable distance along any direc- 
tion of scattering vector. The one-phonon scattering 
rises from a non-zero value at small sin 0/h showing 
the expected peaking at Bragg reflections and a decay 
to ever smaller values at large sin 0/h as the Debye- 
Waller exponent overcomes the K 2 dependence of 
the one-phonon cross section. The behaviour of the 
multiphonon scattering is less well known. 

Rising from zero at zero sin 0/h it too shows 
appreciable structure as it overtakes the one-phonon 

Io i10 

'.t.'," . +4- • ~ . . . . . . . . .  

÷ .l- .1. ~1- 
+ . l -  . l - ÷  

w 

0 ' 0 : 4  ' Or8  ' 1 '-2 ' 1 t 6  ' 2 [ 0  ' 2 ' .4 

sin e / A  

Fig. 2. Variation in one-phonon (+) and multiphonon {*) scatter- 
ing with sin 0 /h  (,~-1) for scattering vector along [110]. The 
logarithmic intensities (in electron units per cell) were calculated 
from the shell model for GaAs at 295 K. 

cross section at quite modest sin 0/h. At sin 0/A 
around 2 A -1, the structure becomes less pronounced 
but the multiphonon cross section is not eventually 
reduced by the Debye-Waller factor. In the graph 
shown it actually flattens off but this is an artifice of 
the parameterization of the scattering-factor curves 
in International Tables for X-ray Crystallography. This 
parameterization is only representative for sin 0/A < 
2/~-1 and contains a constant term, independent of 
sin 0/h. It is this constant term that is holding up the 
large IKI end of Fig. 3 because in the limit of large IKI 

I /  Ntrolo~ ~ fk f* ,  (16) 
k 

the incoherent approximation. 
It is not obvious at first sight how the structure 

disappears from the multiphonon sum at large IKI 
because all terms in the exponent for Wkk' appear to 
be equally affected by an increase in IKI. It is best to 
look at (2). All terms contributing to the real exponent 
decrease as exp ( - aK2) ,  a a constant, except for one. 
This is the term where r ( l k )=0  and k ' = k .  Its 
exponent is identically 0 for all K and hence the 
scattering at large IKI is dominated by this one term, 
which gives just the incoherent sum of (16). 'Multi- 
phonon' is a misnomer for this scattering because no 
phonons are involved. In this limit, since there is no 
interference of waves scattered by neighbouring 
atoms, the mere translational motion of the scattering 
centres does not influence the cross section. As one 
comes in from the large IKI limit (say sin 0/h = 3 A -1) 
scattering from a few other atoms in the crystal begins 
to influence the intensity. First to come in is the 
scattering from the neighbouring atom in the unit 
cell, soon followed by atoms in neighbouring unit 
cells. Whether these increase or decrease the total 
cross section depends on the sign of the associated 
phase terms exp {iK. [ r ( l k ) -  r(0k')]}. As IKI reaches 
modest and small values a great many lk terms are 
all contributing significantly to the total phonon scat- 
tering, which gradually makes a transition from being 
controlled by one term in real space to being con- 
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trolled by one term in reciprocal space, the one- 
phonon scattering. 

Two important conclusions can be drawn from this 
analysis. If Debye-Waller factors are taken from 
experiment or from some other model (or even from 
the same model evaluated with a different mesh size) 
for the calculation, they will not produce the required 
zero exponent of the term with r( lk)= 0, k '=  k. The 
residual exponent will cause the large [K[ scattering 
to increase or decrease with a spurious exponential 
factor (depending on whether the Debye-Waller 
terms are smaller or larger than the model's). The 
exact value of [K[ at which this spurious term becomes 
apparent will depend on the mismatch of Debye- 
Waller values. As an example will show in the next 
section, this effective alteration of the baseline for 
multiphonon scattering at larger IK[ can be significant. 
A second point is that we now have a good jus- 
tification for seeing that serious errors will not be 
introduced into the real-space sum by using a small 
microcrystal to calculate multiphonon scattering in 
the regime where it is important. 

It should be added that all the effects discussed 
above as depending on ]K[ .are determined by sin 0/h 
and not by the index of the reflection in units of 2~r/d. 

Variation of scattering with scattering vector, 
temperature and material 

Looking in some detail along the three principal 
symmetry directions of GaAs one can see notable 
variations from the general behaviour. The very weak 
200 and 600 reflections show in Fig. 3(a) a negligible 
peaking of the phonon scattering. The same structure 
factor that is responsible for the weakness of the 

- 2  
0 

reflections also reduces the long-wavelength acoustic 
scattering, which is the dominant phonon scattering 
process close to Bragg reflections. In general, though, 
it is not possible to say how much scattering comes 
from acoustic branches and how much from optic 
branches. The reason is that for most phonons the 
distinction between optic and acoustic branches is 
irrelevant. Indeed the distinction cannot generally be 
found by examining the frequencies and eigenvectors 
alone, because branches may cross, but only by con- 
nectivity arguments not easy to establish in practice. 
Of the three main symmetry axes, it is only along the 
[ 111] direction that the structure factor can take the 
full range of values. In Fig. 3(c), it can be seen that 
as 666 is approached the total thermal diffuse scatter- 
ing actually decreases appreciably. This really will be 
the structure of the scattering seen by a detector of 
normal size, even if there is a very narrow one-phonon 
peak not visible at the resolution of the calculation. 
Such behaviour is contrary to common assumptions 
about how the diffuse scattering always varies close 
to Bragg reflections. 

Although rising temperatures rapidly pull intensity 
out of the larger-index Bragg reflections, owing to 
the Debye-Waller factor, there is only a modest rise 
in the thermal scattering at larger sin 0/h. See Fig. 4. 
This is because most of the scattering is 'multiphonon 
scattering' whose baseline of (16) is temperature 
independent. At low IK I most of the scattering is 
one-phonon scattering and this rises directly with 
temperature once the energy term has reached the 
high-temperature limit for each contributing phonon 
state (the Debye-Waller factor being too small to 
have much effect). More noticeable than differences 
in general levels is the marked difference in the rela- 
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Fig. 3. Variation in one-phonon (+) and multiphonon (*) intensities (in electron units per cell) calculated from the shell model for 
GaAs at 295 K along (a) [100] direction; (b) [110] direction; and (c) [111] direction. 
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tive value of  mul t iphonon and one-phonon processes 
at different temperatures. At low temperatures the 
mul t iphonon scattering freezes out rapidly for all but 
the largest scattering vectors. At high temperatures,  
mul t iphonon scattering rises so rapidly with scatter- 
ing vector that it is generally the dominant  process. 
Fig. 4(c)  shows,  for example ,  that it equals the one- 
phonon scattering by 2.5, 2.5, 2.5 at 700 K for GaAs.  
Notice  the very rapid fall off in the one-phonon  
intensity due to the large Debye-Wal ler  factor at this 
elevated temperature. 

Other materials show similar patterns to GaAs but 
with variation of  fine detail and, in particular, v a r i -  

ation of  sin 0/A at which the mult iphonon intensity 
becomes  comparable  with the one-phonon intensity 
and at which the one-phonon intensity begins to fall 
rapidly. Fig. 5 shows as representative of  some other 
sphalerite structure materials the room-temperature 
scattering given by lattice dynamical  models  for 
CdTe, CuI and SiC along the [111 ] direction. For the 
sources o f  all models  used in this paper, see Reid 
(1983a).  
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Anomalous thermal scattering 

For the materials considered here, anomalous scatter- 
ing produces a difference of intensity between Bivjoet 
pairs only for odd-index Bragg reflections and not 
for even ones. Along the (100) directions and (110) 
directions, the diffuse scattering is independent of 
direction but along (111) and in a general direction 
intensities are different under the transformation 
K -  -K. Fig. 6 shows the percentage difference in the 
total diffuse scattering (one-phonon plus multi- 
phonon) between scattering along [111] and [111] 
for GaSb in Cu Kc~ radiation and GaAs in Mo Ka 
radiation. Anomalous scattering factors from Inter- 
national Tables for X-ray Crystallography (1974) were 
used. For GaSb, the large f" correction at Cu Ko~ for 
the Sb ion is responsible for the large effects. GaAs 
at Mo Ko~ is more typical. 

Comparison between lattice dynamical models 

An earlier study by the author on the Debye-Waller 
factors predicted by various 'good' lattice dynamical 
models for the cubic zincblende structure materials 
concluded that different models gave widely different 
Debye-Waller factors and that the principal cause 
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Fig. 6. Percentage difference between total scattering in [111] and 

[111] directions at 295 K for (a) GaSh with Cu Ko~ radiation 
and (b) GaAs with Mo K a  radiation. The one-phonon and 
multiphonon scattering individually follow very similar trends. 

appeared to lie with the different eigenvectors pre- 
dicted by these models (Reid, 1983a). It is therefore 
not particularly surprising to find appreciable 
differences in the phonon scattering predicted by a 
variety of models. Taking GaAs as an example, the 
shell model comes closest to predicting the observed 
Debye-Waller Bk values but it is not particularly 
good. Fig. 7 shows the difference between the shell- 
model diffuse scattering and that for the valence-shell 
model, the deformation-dipole model and the rigid- 
ion model along one scattering-vector direction when 

:6  

~ - 5  

- 1 0  

- 1 5  

• • +++++ .+ '+  • ~++ • +++++ + ++ 

* ~ . + . . + + + ~  +...÷m $+++++ - . . T  

• • • • • • • 

| • • •  • 1  • • • • • •  • 

x l O  ~ 
8, 

71 

61 

=. 

41 

® 31 

1 

H for scattering vector along (H00) 

(a)  

m 

• • • •  • • •  

• • • •  1 • • • • •  

• l I I i  
l I I  • • • 

• • l  • • • • • •  • 

• • • I l 

• • I l • 

I l i I • 

I l l I 

. ÷ ,  . . ÷ * ' . ÷ . ~  ~ . * * * * * * .  . . . . .  . ÷ * * ÷ . . .  
+++++..+÷" "++++++÷++ ~+..+++'"  -~*+÷.+.~ 

' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' s 

x lO '  
6, 

4 • • 

i i  l •  • 
3 • •=  

m m 

m 
• 

(b )  

••mE 

° 
• •m 

• l  

m 

mm•m• 

m •  

m •  

* + ÷  * ÷ . +  ÷ 
" ÷ ÷ + ÷ ÷ ÷ ÷  " + ÷ ÷ + + + +  ÷ + + + ÷ ÷ + +  + ÷ . + + ÷ ÷ ÷  

H for scattering vector alon 0 (H00) 

(¢) 
Fig. 7. Percentage difference in one-phonon (+) and multiphonon 
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shell model and shell model; (b) deformation-dipole model and 
shell model and (c) rigid-ion model and shell model. For all the 
models the experimental Debye-Waller B values were used (see 
text). 
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the experimental Debye-Waller Bk values are used 
with all models. Sometimes the differences are 
greatest at Bragg reflections; at other times at zone 
boundaries. The multiphonon scattering does not fol- 
low the same trend as the one-phonon. 

In one sense Fig. 7 does not reflect the true 
difference in scattering predicted by the models 
because of the use of the experimental Debye-Waller 
factors. From the earlier discussion it will be seen 
that it is a matter of some debate as to whether one 
should treat the Debye-Waller B values as separable 
parameters in the total phonon scattering. Fig. 8(b) 
shows the true difference in scattering predicted by 
the deformation-dipole and shell models when the 
Debye-Waller terms are treated as part of the model 
calculation. Comparison should be made with Fig. 
8(a), the corresponding difference when the experi- 
mental B values are used, to see that the expected 
improvement in agreement of the multiphonon scat- 
tering at large sin 0/A does now occur, as the model- 
independent incoherent limit of (16) is approached. 
The large difference in one-phonon scattering near 
666 reflects a feature of the deformation-dipole model 
eigenvectors in the [ 111 ] direction. 
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Fig. 8. Percentage difference in one-phonon (+) and multiphonon 
(*) scattering for GaAs at 295 K along [111] between deforma- 
tion-dipole model and shell model (a) using the same experi- 
mental Debye-Waller B values with each model and (b) using 
Debye-Waller B values calculated by the models themselves. 

Multiphonon scattering near Bragg reflections 

The preceding figures lead to several observations 
about multiphonon scattering in the vicinity of Bragg 
reflections. For all but the lowest-index reflections it 
exists in plenty at room temperature for a typical 
material considered here. It has structure, peaking 
under the reflection but not peaking as strongly as 
the one-phonon. Hence at the resolution of these 
calculations the peak is not particularly well shown. 
The important practical point, however, is that the 
volume of reciprocal space sampled by many detec- 
tors is such that they collect diffuse scatter substan- 
tially away from Bragg reflections, well into the region 
where for higher sin 0/A multiphonon processes 
dominate the diffuse scattering. The corollary to this 
is that if corrections are to be based on the principle 
that the one-phonon TDS is the most important (in 
terms of structure, if not magnitude), the sampled 
volume of reciprocal space must be kept as small as 
possible by using a narrow detector slit, a small 
crossfire beam, well monochromated radiation and a 
crystal of reasonably small mosaic spread. These pre- 
cautions are just those one should take in any case 
to improve the 'signal-to-noise ratio' of Bragg scatter- 
ing to diffuse scattering. 

The other important feature of multiphonon scat- 
tering is that as a ratio to Bragg scattering it increases 
roughly exponentially with temperature in the high- 
temperature limit, as opposed to the linear increase 
of one-phonon scattering. Setting K = G, a reciprocal- 
lattice vector, in the calculation described here gives 
for the total phonon scattering the sum of true multi- 
phonon processes ending on G and the average scat- 
tering from all processes involving zerophonon 
wavevectors in the volume Vz. Moreover, the Bragg 
scattering that is calculated is not the integrated Bragg 
scattering but the peak of the diffraction pattern due 
to the microcrystal. However, following the argu- 
ments of Willis (1969) it is found that the ratio of 
diffuse scattering to Bragg scattering so calculated is 
just the ratio of integrated diffuse scattering to Bragg 
scattering seen by a counter of resolution Vz. The 
average one-phonon contribution (11) is correctly 
represented, within the approximations of the 
zerophonon treatment, as 

Ii/Ntrolo= N ~ fk exp (-- Wk)f*,exp (-- Wk,) 
kk '  

Xexp {iG . [r(Ok)-r(Ok')]}Zkk, (17) 

since the only phonons that contribute to this scatter- 
ing are within the zerophonon volume. Multiphonon 
processes seen by such a counter are also included, 
but less accurately. Table 2 gives a quantitative 
illustration for some reflections from GaAs at 295 
and 700 K of values for the Bragg intensity (IB), the 
one-phonon intensity (as a percentage of Is) and the 
multiphanon intensity Im (also as a percentage), the 
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Table 2. Intensities given by the calculation when K is set to a Bragg reflection hkl 

The phonon intensities are related to the integrated intensities recorded by a counter that sees a surrounding spherical volume Vz in 
reciprocal space (see text). The calculation has been made with an n = 4 cubic mesh (giving Vz = 1/256 of  the Brillouin zone volume), 
for GaAs at 295 and 700 K. I B is the Bragg intensity in electron units (e.u.) per cell; I t the one-phonon intensity [essentially from 
equation (17)] and I m the multiphonon intensity calculated as the difference between the total phonon scattering and/1 .  It can be seen 
that, as a rule of  thumb, the weaker is the reflection the larger is 11/I 8 and the larger is 1,,/11. 

Reflection 295 K 700 K 

IB IOOI~/ IB lOOIm/ I8 IB lOOIt/ IB lOOIm/ IB 
h k l (e.u./cell) (%) (%) (e.u./cell) (%) (%) 

5 5 5 2-99×104 7-2 0.42 1.02x104 17.1 2.72 
6 6 6 2-25×102 35.1 12.6 1.68 1974 3200 
7 7 7 7.15×103 14.2 1.84 87 362 159 
8 8 8 7"69 ×103 18.3 2-97 498 50.4 30"4 
6 6 0 6.26x104 6.8 0.35 2.23x104 16.2 2.18 
5 3 1 8.91x104 3.35 0.09 5.39x104 7.9 0.51 

10 6 4 1.36x104 14-4 1.72 1-56x103 36-1 13.8 

calculation taking the observed volume as 1/256th of 
the Brillouin zone. The results can be scaled to other 
volumes following Reid (1973). 

A somewhat different interpretation of what scat- 
tering processes are happening close to Bragg pea.ks 
is provided by the observation made earlier that the 
zerophonon term cancels the zerophonon contribu- 
tion to the Debye-Waller factor. In fact the entire 
TDS at K = G cancels the q = 0 contribution to the 
Debye-Waller factor. In general the TDS from a small 
volume around the reciprocal-lattice point cancels 
the Debye-Waller reduction in the Bragg reflection 
caused by the small wavevector modes in that volume. 
The net effect is that there is no effect of low- 
wavevector phonons on Bragg intensities. In other 
words, for a counting system that necessarily 
integrates not only the Bragg intensity but diffuse 
scattering from a surrounding region, Bragg scattering 
will be observed that is not reduced by the full Debye- 
Waller factor but only by the contribution to the 
Debye-Waller factor of all modes lying outside the 
sampled volume of reciprocal space. This interpreta- 
tion is valid provided the sampled volume con- 
tains phonons reasonably well represented by the 
dispersionless limit. For larger wavevector phon- 
ons, the diffuse scattering involving K = G - q  is 
not equal to the loss of Bragg scattering caused by 
the q phonons contributing to the Debye-Waller 
factor. 

Looked at in real-space terms, there is never a 
Debye-Waller reduction of intensity merely from a 
translation of the whole crystal backwards and for- 
wards. For an apparatus whose resolution extends a 
short distance qs away from reciprocal-lattice points, 
there is also a negligible reduction of Bragg intensity 
due to all lattice waves of wavelength longer than 
2~r/qs. Perhaps this interpretation can be made the 
basis of an altemative intensity correction strategy 
involving the calculation of partial Debye-Waller 
factors. 

Multiphonon scattering from a deforming electron 
distribution 

The use of a shell model to calculate the scattering 
from a deforming electron distribution has recently 
received some quantum mechanical justification by 
Matthew & Yousif (1984). Reid (1983b) examined 
what effect such deformations are likely to have on 
the Debye-Waller factor for Bragg reflections, giving 
numerical results for a number of cubic zincblende 
structure materials. Do these ionic deformations also 
alter the total phonon scattering? Application of the 
same first-principles approach with a shell model 
leads to a modified phonon scattering cross section, 
which could be evaluated without approximation in 
the spirit of this paper. However the precise evalu- 
ation would be time consuming and it is clear that 
the additional terms are controlled by the shell scat- 
tering factor, which typically dies away at sin 0/A 
around 0.15/~-1. Hence in the region where the total 
phonon scattering may be significantly affected by a 
deforming electron distribution, multiphonon proces- 
ses are of little importance and the scattering is domi- 
nated by the one-phonon cross section. It is appreci- 
ably simpler to incorporate ionic deformation in the 
one-phonon cross section only, and examples of its 
effects can be seen in the calculations of Reid 
(1974). 

I would like to thank the Science and Engineering 
Research Council for grant support during this work 
and Aberdeen University Computing Centre for pro- 
viding the computing facilities. 
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APPENDIX 

Notation for the scattering cross section 

ratio of scattered to incident intensity 
number of unit cells in scattering sample 
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tro 
l 
k 

A 
wk 

K 
r(Ik) 
A 
q 

J 
to;~ 

E~ 
mk 

d'(k/A) 

scattering given by a free electron 
index labelling unit cells 
index labelling atom within unit cell 
scattering factor 

Debye-Waller term 

= (1 /2N)  Y~ (E/w2)xlK.8(k/A)/m~k/212 
A 

scattering vector 
equilibrium coordinate of atom (lk) 
phonon state label (q j) 
phonon wavevector 

phonon branch index 
phonon angular frequency 

average energy in phonon state (q j) 
mass of kth atom in unit cell 

(normalized) eigenvector for atom type k 
and phonon state A 
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Abstract 

A computer generation of all the non-equivalent 
superspace groups for one-dimensionally modulated 
structures has been performed. Comparison of this 
result with the previous list by de Wolff, Janssen & 
Janner [Acta Cryst. (1981), A37, 625-636] shows that 
three superspace groups in this list are equivalent to 
others and that six groups had been overlooked. The 
new list contains 775 (3 + 1)-dimensional superspace 
groups. Some ambiguous points in the notation of 
the superspace groups and the selection of the wave 
vector are discussed. 

* This work was partly done, while on leave, as a visiting member 
of the Institute for Theoretical Physics, University of Nijmegen. 
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1. Corrections to the former list 

A list of (3+ 1)-dimensional superspace groups has 
been given by de Wolff, Janssen & Janner (1981), 
hereafter referred to as I. The list was calculated 
partly by computer, partly by hand. Although the 
calculation was done carefully and employing two 
independent methods, errors are almost unavoidable 
in computations of such length by hand. For that 
reason we have once more executed the calculations 
of the non-equivalent superspace groups in which all 
the steps were performed by means of a computer. 
Furthermore, in order to remove errors in program- 
ming, superspace groups have been generated by two 
independent programs based on the same theory 
(Janner & Janssen, 1979). As a result, several dis- 
crepancies have been found between the new list and 
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